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ABSTRACT: The local particle filter (LPF) and the local nonlinear ensemble transform filter (LNETF) are two moment-

matching nonlinear filters to approximate the classical particle filter (PF). They adopt different strategies to alleviate filter

degeneracy. LPF and LNETF localize observational impact but use different localization functions. They assimilate ob-

servations in a partially sequential and a simultaneous manner, respectively. In addition, LPF applies the resampling step,

whereas LNETF applies the deterministic square root transformation to update particles. Both methods preserve the

posterior mean and variance of the PF. LNETF additionally preserves the posterior correlation of the PF for state variables

within a local volume. These differences lead to their differing performance in filter stability and posterior moment esti-

mation. LPF andLNETF are systematically compared and analyzed here through a set of experiments with a Lorenzmodel.

Strategies to improve the LNETF are proposed. The original LNETF is inferior to the original LPF in filter stability and

analysis accuracy, particularly for small particle numbers. This is attributed to both the localization function and particle

update differences. The LNETF localization function imposes a stronger observation impact than the LPF for remote grids

and thus is more susceptible to filter degeneracy. The LNETF update causes an overall narrower range of posteriors that

excludes true states more frequently. After applying the same localization function as the LPF and additional posterior

inflation to the LNETF, the two filters reach similar filter stability and analysis accuracy for all particle numbers. The

improved LNETF showsmore accurate posterior probability distribution but slightly worse spatial correlation of posteriors

than the LPF.
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1. Introduction
Data assimilation (DA) estimates the state of a dynamical

system by combining information from short-range model

forecasts (also called background or prior) and observations.

In the Bayesian framework, the analysis (or posterior) accu-

racy relies on the quality of the estimated probability density

function (PDF) for the prior and the observation likelihood.

For the widely used ensemble-based approach such as the

ensemble Kalman filter (EnKF; Evensen 1994; Houtekamer

and Mitchell 1998; Anderson 2001; Whitaker and Hamill 2002;

Hunt et al. 2007) and ensemble-variational hybrid schemes

(EnVar; Hamill and Snyder 2000; Lorenc 2003; Buehner 2005;

Wang et al. 2007, 2008a,b, 2013;Wang and Lei 2014), the PDFs

of the background and the observation likelihood are assumed

to be Gaussian. Consequently, the probability distribution of

the analysis states are derived via the estimated posterior mean

and covariance. For practical applications, highly nonlinear

model dynamics (Bocquet et al. 2010; Legrand et al. 2016) or

nonlinear observation operators (Pires et al. 2010) could lead

to non-Gaussian distributions of background forecast states

and observation likelihoods. Such non-Gaussian behaviors of

the background and the observation likelihood would yield a

suboptimal performance of the EnKF and EnVar assimilation.

Different from EnKF and EnVar, the particle filter (PF; see

Doucet et al. 2001 and van Leeuwen 2009 for a review) does

not rely on the Gaussian assumption for the probability dis-

tribution of prior particles and observation likelihoods. The PF

estimates the PDF of posterior particles (or ensemble) via

weighting each prior particle conditioned on the assimilated

observations. These weights are calculated by the likelihood of

observations, which varies with the specific observation PDF.

Despite the theoretical benefits of PFs for non-Gaussian

applications, various problems still constrain its potential use

for high-dimensional dynamical systems. One of the most se-

rious challenges is the so-called ‘‘filter degeneracy’’ (Doucet

et al. 2001; Snyder et al. 2008). When using a limited number of

particles to sample the prior distribution in a high-dimensional

state space, most of the particles may not lie in the significant

probability region determined by the likelihood of assimi-

lated observations. During the update or resampling of

particles, prior particles with small weights are typically

removed, while others with much larger weights are du-

plicated (e.g., Gordon et al. 1993). After the successive

assimilation of independent observations with relatively

small errors, the weights will collapse onto a single particle,

leading to the filter degeneracy. Previous studies have

demonstrated that the smallest number of particles needed

to prevent filter degeneracy roughly grow exponentially

with the effective dimension of a system (Bengtsson et al.

2008; Bickel et al. 2008; Snyder et al. 2008). Therefore, it is

impractical for the direct application of the classical PF for
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problems such as operational atmospheric and oceanic DA,

where the effective dimension is extremely high.

The filtering problem arising from a limited ensemble size

is not unique to the PF. For the EnKF and EnVar, a small

ensemble can produce large sampling errors (Anderson 2001)

and the significant rank deficiency (e.g., Hamill and Snyder

2000) during the background covariance estimation, and

thereby cause an unstable filter or even filter divergence.

Therefore, various solutions are proposed to ensure the al-

gorithms remain stable over longer time intervals. The most

widely used solution is to limit the impact of observations in a

local region (Mitchell et al. 2002). This process can be

achieved by modulating the ensemble background error co-

variance with a function whose value decreases with an in-

creasing distance (Houtekamer and Mitchell 2001; Whitaker

and Hamill 2002; Holland andWang 2013), or by inflating the

observation errors when the observations are farther away

from the grid point of interest (Ott et al. 2004; Szunyogh et al.

2005; Huang et al. 2019). Plenty of studies have demonstrated

that the localization effectively removes spurious long-range

error correlations (Oke et al. 2007), arriving at much im-

proved filter stability.

Similar localization strategies have already been applied to

several non-Gaussian filters built on the framework of ensemble-

basedKalman filter. For example, the localization of background

covariance in local-local Gaussian filter (Bengtsson et al. 2003)

and the rank histogram filter (Anderson 2010), and the volume-

based localization in the moment-matching filter (Lei and Bickel

2011). Unlike the aforementioned studies, PFs do not rely ex-

plicitly on prior covariances, but the similar localization concept

is feasible for PFs. This study focuses on two recently proposed

localized approaches to approximate PF solutions.One approach

is termed as the local PF (LPF; Poterjoy 2016), the other is

termed as the local nonlinear ensemble transform filter (LNETF;

Tödter and Ahrens 2015; Tödter et al. 2016). Note that the lo-

calization alone does not fix the filter degeneracy issue for both

approaches. Several additional treatments are applied to stabilize

the filter. As a result, the posteriors from both methods only

preserve limited moments of the PF,1 similar to the moment-

matching approach (e.g., Lei and Bickel 2011). The LPF pro-

cesses observations sequentially. Like the traditional PFs, the

LPF applies a bootstrap resampling of particles based on the

weights determined by the observation likelihood calculations. In

the classical PF, each prior state vector is assigned a scalar weight,

i.e., each state element has a constant weight. To realize locali-

zation, the LPF first extends the scalar weights to spatially

varying vector quantities. A localization coefficient is then ap-

plied to limit the impact of a given observation to a local physical

region by gradually homogenizing the particle weights for more

distant grid points. Posterior mean and variance are first calcu-

lated using the localized PF weights and the original prior par-

ticles. The particles are then updated by applying additional

regularization and particle mixing steps (Poterjoy et al. 2019),

which are needed to stabilize the filter. These additional steps

result in posterior particles that only match the mean and vari-

ance of the PF posterior density functions.

The LNETF adopts a similar framework as the local

ensemble transform Kalman filter (LETKF, Hunt et al.

2007), which updates the ensemble at each grid point in

parallel by considering only the observations within a local

subdomain centered at the given grid. Like the LETKF, the

LNETF applies a deterministic square root algorithm that

uses transform matrices to update the prior. Unlike the

LETKF, the weights used to transform prior particles are

derived so that the posterior particles match the first two

moments, namely the mean and covariance, of the PF-

estimated posterior within each local subdomain. Similar to

the LPF, additional steps are necessary to stabilize the filter

in addition to the localization, such as the variance inflation

for prior particles and the transformation of a random

rotation matrix.

Previous studies have shown that both LPF and LNETF can

be applied for high-dimensional systems without filter diver-

gence even using a limited number of particles (Poterjoy and

Anderson 2016; Poterjoy et al. 2019; Tödter et al. 2016). The
LPF and LNETF, however, are distinct in various aspects.

First, the former processes observations sequentially, while the

latter assimilates observations simultaneously. Past EnKF

comparisons suggest sequential and simultaneous updates can

lead to different filter performance (e.g., Ehrendorfer 2007;

Holland and Wang 2013). Second, they apply different func-

tions for localization, although the common aim is to taper

observational impact with an increasing distance. The third

distinction, which may be the most significant, lies in their al-

gorithmic differences in updating the particles to match limited

moments of the PF. The impact of the above differences on

filter stability and posterior moment estimation (e.g., mean,

covariance, and the full PDF) is still unclear and of great in-

terest. Additionally, the practical application of PFs for high-

dimension systems is still in the early stage of exploration. An

understanding of the differences of existing approaches that

approximate the PF can advance the theoretical and practical

development of the PF algorithm. Therefore, the goal of the

present study is to systematically compare the two forms of

localized nonlinear moment-matching methods, namely the

LPF and the LNETF. Focus will be placed on the filter per-

formance in the presence of differing localization functions and

particle update algorithms. In addition, strategies to poten-

tially improve the two methods are explored.

Note that the LPF applies a secondary adjustment to par-

ticles, after making the posteriors match the mean and vari-

ance. This step performs an additional univariate probability

mapping of marginal state variables. The cumulative distri-

bution function (CDF) of original PF weights is mapped to

that of an equally weighted kernel estimate of the updated

particles—denoted the kernel density distribution mapping

(KDDM) in Poterjoy (2016). This step would, to some extent,

account for higher moments. Given that the same step can be

applied to the LNETF and our aforementioned foci in com-

paring the two methods, KDDM is not implemented in either

filter for this comparison.

1 Preserving a specific moment of the PF means adopting the

same update algorithm as the PF to derive the posterior moment

given particle weights.
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The paper is organized in the following manner. Section 2

introduces the algorithms for the classical PF and its two ap-

proximations, the LPF and LNETF, with a focus on their

specific means of alleviating filter degeneracy. Section 3 de-

scribes the configurations for the model and DA systems and

discusses the experimental designs. Section 4 displays and an-

alyzes experiment results, and section 5 provides conclusions

and a discussion.

2. Methods

a. The particle filter
The foundation for the PF is Bayes’s theorem, which

quantifies the probability distribution of posterior particles

given new pieces of observation information (Doucet et al. 2001).

Consider an Nx-dimensional nonlinear dynamical system includ-

ing x5 (x1, x2, x3, . . . , xNx
)T, which is a random system state, and

y, which is an observational vector of length Ny. The observation

relates to the true state xt through the following:

y5H[xt]1 e , (1)

where H[] is an observation operator that maps the system

states onto the observation space, and e is the observational

error. From Bayes’s theorem, the PDF of the system state x

conditioned on the observation y is calculated as follows:

p(xjy)5p(yjx)p(x)
p(y)

, (2)

where p(yjx) is the likelihood of observations, p(x) is the PDF

of prior particles and p(y)5
Ð
p(yjx)p(x)dx. Let f(x) be any

function of prior particles. Its posterior expectation given ob-

servation y is written as follows:

E[f (xjy)]5
ð
f (x)p(xjy) dx5

ð
f (x)

p(yjx)p(x)
p(y)

dx .
(3)

Following Eq. (3), assuming f(x)5 x, the first moment (i.e., the

mean) of posterior particles can be obtained through a Monte

Carlo approximation:

xa 5 �
Ne

n51

w
n
xfn . (4)

The superscripts a and f denote the posterior and prior

particles, respectively, Ne is the number of particles, and

wn 5p(yjxfn)/�Ne

n51p(yjxfn) is the normalized observation likeli-

hood or, in other words, the normalized weight of prior particle

xfn givenobservation y. The secondmoment (i.e., the covariance) of

posterior particles Pa is computed given f (x)5 (x2 xa)(x2 xa)
T
:

Pa 5 �
Ne

n51

w
n
(xfn 2 xa) (xfn 2 xa)

T
. (5)

Note that as shown in Eq. (4), given a new observation, the

PF imposes a scalar weight on each prior state vector,

which allows the observation to influence the entire state

vector. For a limited number of particles, this will lead to

inaccurate sampling of the posterior distribution for a high-

dimensional system.

b. The local particle filter (LPF)

The LPF method used in this study followed the latest ad-

vances in Poterjoy et al. (2019). This section highlights various

strategies applied in the LPF to alleviate the filter degeneracy.

1) INFLATION OF OBSERVATIONAL ERROR

When assimilating observations with very small error stan-

dard deviation (Std) s, the likelihood function spans a narrow

region so that only few particles are given significant weights. It

inevitably underestimates the ensemble spread in subsequent

DA cycles and increases the risk of filter degeneracy. To

overcome the problem, Poterjoy et al. (2019) applied the

adaptive inflation of observational error variance (b inflation

hereinafter) and found it dramatically improved the filter sta-

bility, especially for small observational errors.

The b inflation strategy estimates an inflation coefficient b

(b $ 1) of observational error variance to ensure that the ratio

between the effective particle numberNeff and the actual number

of prior particles Ne reaches a given threshold reff (0 , reff # 1;

hereinafter called the inflation parameter). Let wn,yi denote the

normalized weight for the nth prior particle given the ith obser-

vation yi, Neff is then calculated by Neff 5
�
�Ne

n51w
2
n,yi

�21

. If

observations have Gaussian likelihoods, wn,yi with b inflation is

written as follows:

w
n,yi

5 exp

(
2
(y

i
2H

i
[xfn])

2

2b
i
s2
yi

),
�
Ne

n51

exp

(
2
(y

i
2H

i
[xfn])

2

2b
i
s2
yi

)
,

(6)

where s2
yi
represents the observational error variance of yi and

Hi[] is the operator that generates the observation prior for yi;

b is calculated for each observation before assimilating any of

them. More details concerning the b inflation can be referred

to Poterjoy et al. (2019).

2) LOCALIZATION OF OBSERVATIONAL IMPACT

Considering the decreasing impact of observations with an

increasing distance, the particle weights would become more

homogeneous for remoter grids from a given observation.

Mathematically, it is achieved as the following:

v
n,yi ,j

5 w
n,yi

2 1/N
e

� �
l
yi ,j

1 1/N
e
, (7)

wherevn,yi ,j is the localized particleweight as a functionof not only

the specific particle n and observation yi but also the grid point (j5
1, 2, . . . , Nx) in space. The localization effect is achieved by ta-

pering the deviation of particle weights from theirmean value 1/Ne

with a correlation coefficient lyi ,j that decays with distance (here-

inafter the loc-D scheme); lyi ,j usually uses a fifth-order polynomial

function (Gaspari and Cohn 1999), which has a Gaussian-like

shape. The localized particle weights are iteratively updated and

normalized with observations sequentially assimilated:

v
n,y1:i ,j

5v
n,y1:i21,j

v
n,yi ,j

. (8)
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The initial weights are homogeneous for each grid and particle,

namely equal to 1/Ne.

After calculating the weights vn,y1:i ,j, the LPF obtains the

posterior mean and variance for the first i observations as-

similated following the generic equations of the PF, i.e., Eqs.

(4) and (5):

xay1:i
5 �

Ne

n51

V
n,y1:i

+ xfn and (9)

Va
y1:i

5 �
Ne

n51

V
n,y1:i

+ xfn 2 xay1:i

� �
+ xfn 2 xay1:i

� �
, (10)

whereVn,y1:i 5 (vn,y1:i ,1,vn,y1:i ,2, . . . ,vn,y1:i ,Nx)
T andVa

y1:i
5 (Vy1:i ,1,

Vy1:i ,2, . . . ,Vy1:i ,Nx)
T
composes the posterior variance for each

grid point. As discussed in sections 1 and 2b(3), posterior

particles are eventually rescaled to match the mean and vari-

ance in Eqs. (9) and (10) for each grid point. Similar moment-

matching approach was proposed in Lei and Bickel (2011).

Note that despite the sequential processing of observations,

per Eqs. (6)–(10), the LPF always uses the particle weights

conditioned on the original prior particles [see Eq. (6)] to up-

date the posterior mean and variance. In other words, the LPF

posterior mean and variance do not rely on the order of assimi-

lated observations or are not obtained sequentially.However, the

LPF posteriors froma given observation are used as the priors for

deriving the posterior particles given the next observation [see

section 2b(3)]. The latter are then adjusted tomatch the posterior

mean and variance obtained nonsequentially. We thus define the

LPF as a partially sequential assimilation method.

3) RELAXATION OF POSTERIOR PARTICLES TO PRIORS

AND ONLY MATCHING THE MEAN AND VARIANCE

To ensure the matching of posterior mean and variance

calculated in Eqs. (9) and (10), the posterior particles given each

new observation in the LPF are successively updated as follows.

Let xfn,y1:i21
be the nth prior particle after assimilating the first i2 1

observations. The scalar weight of each particle xfn,y1:i21
given the

ith observation with Gaussian likelihood is ~wn,yi:

~w
n,yi

5 exp

8><
>:2

y
i
2H

i
xfn,y1:i21

h i� �2
2b

i
s2
yi

9>=
>;=�

Ne

n51

exp

8><
>:2

y
i
2H

i
xfn,y1:i21

h i� �2
2b

i
s2
yi

9>=
>;. (11)

Notice that ~wn,yi is a scalar weight on which no localization is

implemented, and it is used for the resampling procedure.

Specifically, draw Ne particles from (xf1,y1:i21
, xf2,y1:i21

, . . . ,

xfNe ,y1:i21
) according to their respective scalar weights ~wn,yi,

producing the resampled particles (xfk1 ,y1:i21
, xfk2,y1:i21

, . . . ,

xfkNe ,y1:i21
). The posterior particles given the first i observations

are then computed by combining the resampled and prior

particles as the following (Poterjoy 2016):

xan,y1:i
5 xay1:i

1 r
1
+ (xfkn ,y1:i21

2 xay1:i
)1 r

2
+ (xfn,y1:i21

2 xay1:i
), (12)

where r1 5 (r1,1, r1,2, . . . , r1,Nx
)T and r2 5 (r2,1, r2,2, . . . , r2,Nx

)T are

the weights of resampled and prior particles, respectively. The

calculation of r1 and r2 can be referred to Poterjoy (2016). Near

the observation location, r1 5 1 and r2 5 0, which means for

those grid points that are near the observation the resampled

particles are regarded as posterior particles. Therefore, the

posterior particles near the observation approximately pre-

serve all moments of the PF. For regions that are sufficiently

distant from observations, r1 5 0, r2 5 1, the prior particles are

used as the posterior particles. For regions in between (termed

as gray zone), the resampled and the prior particles are

blended and the weights r1 and r2 are deduced to ensure only

themean and variance of posterior particles are consistent with

those obtained from the PF; i.e., following Eqs. (9) and (10).

In practical cycling DA experiments, despite the treat-

ments above, the resampling procedure may still negatively

impact the filter stability as it duplicates and removes parti-

cles, leading to insufficient diversity of posterior particles,

especially with a small sample size. To mitigate the problem,

Poterjoy et al. (2019) introduced an extra scalar mixing

parameter g to further relax posterior particles to the prior

particles (called g relaxation):

xan,y1:i
5 xay1:i

1gr
1
+ xfkn ,y1:i21

2 xay1:i

� �
1 [g(r

2
2 1)1 1]+ xfn,y1:i21

2 xay1:i

� �
, (13)

where g is a tunable parameter between 0 and 1. The

similar concept was first proposed in Zhang et al. (2004).

The posterior particles obtained from Eq. (13) are then

rescaled so that for each variable the mean and variance

follow Eqs. (9) and (10). Notice that this further relaxation

and rescaling allow the LPF to only maintain the mean and

variance of the localized PF for all grids even at the regions

near observations.

c. The local nonlinear ensemble transform filter (LNETF)
The algorithm of LNETF here follows Tödter and Ahrens

(2015). This section again only highlights various strategies

adopted by the LNETF to alleviate filter degeneracy.

1) INFLATION OF PRIOR PARTICLES

Different from the LPF, the LNETF in Tödter and Ahrens

(2015) applies a prior inflation of particles that is widely used

by EnKFs (e.g., Anderson andAnderson 1999) to deal with the

collapse of particle weights and the underestimation of en-

semble spread. The deviation of prior particles from theirmean

is inflated by a factor a as the following:

xfn ) (xfn 2 xf )a1 xf , (14)

where xf is the ensemble mean of prior particles.
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2) LOCALIZATION OF OBSERVATIONAL IMPACT

The LNETF has two procedures to localize observational

impact. One is similar to the LETKF that performs parallel

assimilation for each grid point by incorporating only the ob-

servations within a local subdomain. The second is to modulate

the particle weights so that for remote grids the deviations of

the weights among different particles are reduced; see Eq. (15).

Let assume that there are Ns (Ns # Ny) observations yi (i 5 1,

2, . . . , Ns) within the localization radius rs centered at grid j.

Considering wn,yi as the normalized weight for the nth prior

particle given observation yi as in section 2b, the LNETF cal-

culates the localized particle weights at grid j using the fol-

lowing function:

v
n,yi , j

5w
lyi , j
n,yi=�

Ne

n51

w
lyi , j
n,yi

, (15)

where all terms have the same definitions as those in section 2b.

A notable difference between Eqs. (7) and (15) is that the

LNETF uses a different function to realize the localization.

Specifically, the LNETF places the correlation coefficient lyi , j
as the power of the weightwn,yi (hereinafter the loc-P function)

to smooth particle weights and to weaken observational impact

for distant grid points. Such localization function holds for

general observation likelihoods. The detailed comparison of

the loc-D and loc-P functions will be given in section 4b. The

accumulated weights for particles at grid j contributed by allNs

observations is then given as the following:

v
n,j
5P

Ns

i51

v
n,yi , j

, (16)

The localized weights vn,j for j 5 1, 2, . . . , Nx are then

normalized by the sum of all particles at each grid, i.e.,

vn,j ) vn,j/�Ne

n51vn,j. The (local) posterior mean at grid j is

computed by

xaj 5 x
f
j 1 xf

0T
j V

j
, (17)

where xf
0
j 5 (xf

1,j 2 xf
j , x

f
2,j 2 xf

j , . . . , x
f
Ne ,j

2 xf
j )

T

and Vj 5 (v1,j,

v2,j, . . . ,vNe ,j)
T
contain the perturbations and weights of each

prior particle at grid j, respectively. As shown in the next

section the same localized particle weights are used to update

particle perturbations.

3) DETERMINISTIC FILTER AND THE USE OF RANDOM

ROTATION MATRIX FOR FILTER STABILIZATION

Different from the classical PF and the LPF, which attain

posterior particles based on the resampling procedure, the

LNETF adopts a deterministic square root filter. A transform

matrix is derived to satisfy the first twomoments, i.e., the mean

and covariance, of posterior particles, consistent with those

estimated by the PF. The prior particle perturbations are

transformed into posterior perturbations as the following:

xa
0T

j 5
ffiffiffi
n

p
xf

0T
j TL , (18)

T5 (W
j
2V

j
VT

j )
1/2

, (19)

where xa
0

j 5 (xa1,j 2 xaj , x
a
2,j 2 xaj , . . . , x

a
Ne ,j

2 xaj )
T
is the perturba-

tion vector of posterior particles xaj 5 (xa1,j, x
a
2,j, . . . , x

a
Ne ,j

)T, and

Wj 5 diag(Vj). Here, T is the transform matrix that is derived

from the particle weights considering the localized impact of

observations, and L is an Ne 3 Ne mean-preserving random

rotation matrix (Sakov and Oke 2008; Nerger et al. 2012),

which has been demonstrated to be a very critical procedure to

increase the diversity of particles and improve the filter stability.

Note that, because of the use of local volumes, the LNETF only

preserves the posterior covariance of the PF for state variables

within each local volume. The covariance of state variables

across local volumes is not guaranteed to be preserved.

Given the description of LPF and LNETF in sections 2b and

2c, respectively, it is noted that LPF and LNETF can preserve

the posterior mean and variance of the PF. The LNETF ad-

ditionally preserves the posterior correlation of state variables

within the local volume. Moreover, it can be shown mathe-

matically that given the same priors and localization, they

produce the same posterior mean and variance, but may differ

in other aspects of posteriors due to their different filter algo-

rithms. This is further discussed in section 4d.

3. Models and experimental setups

a. Configurations of models and DA systems
In this study, we adopted the Lorenz (2005) model (denoted

by Lorenz2005). Compared to the Lorenz96 model (Lorenz

1996), Lorenz2005 has higher spatial correlations better re-

sembling the real atmosphere. It mimics the behavior of a

meteorological variable along a constant latitude:

_x
j
52[x

j22K
][x

j2K
]1 ([x

j2K
]x

j1K
)2 x

j
1F , (20)

where the square brackets denote an average of nearby grid

points. We chose K 5 2 {i.e., [xj]5 (xj21 1 2xj 1 xj11)/4} and

F 5 12 following Rainwater and Hunt (2013). It has Nx 5 80

grid points around a periodic domain; that is, the state vector

is x5 (x1, x2, . . . , x80)
T, where x0 5 x80, x21 5 x79. It is solved

with a fourth-order Runge–Kutta scheme with a typical time

step of Dt 5 0.05 nondimensional units (corresponding

roughly to 6 h).

We first run the model with xj 5 F ( j 6¼ 8), x8 5 8.0001 and

integrate it for 500 days (i.e., 100 time units and 2000 time

steps) to generate the state xt(0) to initialize the nature (truth)

run. From xt(0) we integrate the model for another 500 days to

generate a true trajectory for idealized DA experiments.

Observations are then simulated by adding random noises to

the true state at each grid (i.e., Ny 5 80). The simulated ob-

servations are produced with a temporal frequency of 1 day,

which means the DA interval is 24 h, and there are 500 con-

secutive analysis cycles. Two types of observations are tested:

one has Gaussian distributed errors and the other has non-

Gaussian double exponential distribution following Tödter
and Ahrens (2015). The probability densities of observation

errors are illustrated in Fig. 1. The observation errors have an

expected value of zero and an Std of 1.0 (Fig. 1a) and 0.2

(Fig. 1b), respectively, representing two distinct observational

accuracies.
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The comparison of skewness and kurtosis of probability

distribution against those of a Gaussian distribution, that is, 0

and 3, respectively, signifies the level of non-Gaussianity

(Morzfeld and Hodyss 2019). Our evaluation shows that the

prior distribution in the current experimental setup has

skewness (20.02) that slightly deviates from zero and kurtosis

(3.67) that is slightly larger than 3.0 and thus presents mild

non-Gaussianity. The double exponential distribution of ob-

servations, despite the zero skewness, has kurtosis double the

value of a Gaussian distribution (6 vs 3), characterized as

medium non-Gaussianity.

The very first prior particles are produced by initializing

1-day ensemble forecasts from perturbed initial Gaussian dis-

tributed ensembles with Std 1. These initial conditions are

centered at a state generated by adding uncorrelated Gaussian

errors with mean 0 and Std 0.4 to the true state xt(0). The

performance of the LPF and LNETF are compared in terms of

different particle numbers Ne 5 10, 20, 40, and 80. For a fair

comparison, the LPF and LNETF use the same true states and

observations in each cycle and the common prior particles in

the first analysis cycle. The prior particles in subsequent DA

cycles are generated by integrating the same model with no

model errors. The localization coefficient lyi ,j for themodel grid

j corresponding to the assimilation of observation yi is deter-

mined by a Gaussian function exp[2d2/(2r2d)], where d is the

distance between grid point j and observation yi, and rd is the

parameter that controls the range of observational impact. This

Gaussian-like localization coefficient lyi ,j has no zero cutoff.

For a fair comparison, the subdomain size for the LNETF as-

similation is expanded to the globe (i.e., rs5Nx/2 andNs5Ny)

to guarantee the same amount of observations as the LPF are

considered for updating individual grid points. As shown in

Eq. (13), the LPF adopts a relaxation factor. A value of g5 0.5

is used since this value is overall optimal in our experiments

and also in Poterjoy et al. (2019). The configurations for the

model and the parameters for experimental setups are sum-

marized in Table 1.

b. Observation likelihood and inflation
The likelihood function for observations describes the

plausibility of observations for certain true states (Berger and

Wolpert 1984; i.e., each prior particle in this study). An accu-

rate estimation of likelihood relies on a clear understanding of

the PDF of observations. This study assumes that the PDF of

observations is explicitly known, and reflected in the following

two likelihood functions for Gaussian and non-Gaussian dou-

ble exponential distributions:

p(y
i
jx

n
)5 exp

(
2
(y

i
2H

i
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n
])2
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yi

)
and (21)
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n
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n
]j

b
yi

!
, (22)

where the pair of vertical bars represents the absolute value.

The error variances of the above two types of observations are

s2
yi
and 2b2

yi
, respectively. For a given particle, the likelihood

p(yijxn) then is normalized by its sum over all particles to

approximate a particle weight.

Our tests show that theLNETFusingb inflation [section 2b(1)]

performs much better than with the standard prior inflation

[section 2c(1)] in terms of posterior mean error for almost all

particle numbers and observational error magnitudes (not

shown). Consequently, the LNETFwill adopt the b inflation as

an alternative to the prior inflation in all the experiments of this

study. Using the same inflation for the two filters allows for

focusing our comparison primarily with respect to the locali-

zation and particle update strategies.

FIG. 1. Probability density of observational errors satisfying Gaussian (black) and double exponential (blue) dis-

tributions with the expected value zero and standard deviation (Std) of (a) s 5 1.0 and (b) s 5 0.2.

TABLE 1. Parameters of the model configuration and experimental setup for the Lorenz2005 model.

State dimension Nx Time step Forecast length Obs No. Ny Std of obs error Case No.

Lorenz2005 80 0.05 0.2 80 1.0; 0.2 500
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c. Experimental design
The LPF and LNETF present two major differences, one is

the localization function and the other is the filter scheme. The

LPF and LNETF adopt distinct localization functions [cf. Eqs.

(7) and (15)] in their original forms that are the loc-D and

loc-P, respectively. They have similar concept to localize ob-

servational impact, i.e., through homogenizing particle weights

for remote grids, but differ in forms. Therefore, the localization

functions can be used alternatively for individual filters. The

differences of the LPF and LNETF schemes mainly lie in the

different assimilation framework, i.e., the partially sequen-

tial and the simultaneous methods, respectively, and the

different particle update algorithms, i.e., the resampling

based and the deterministic transformation algorithms, re-

spectively. To examine these differences between the LPF

and LNETF and explore possible strategies to improve their

performance, a set of experiments are designed (see the

summary in Table 2).

d Experiment 1. These simulations compare the performance

of the original LPF and LNETF, named LPF_loc-D and

LNETF_loc-P, respectively.

d Experiment 2. The objective of this experiment is to apply

both localization functions to the LPF and LNETF to

examine the impact of loc-D and loc-P on filter perfor-

mance.TheexperimentsLPF_loc-D,LPF_loc-P,LNETF_loc-D,

and LNETF_loc-P are conducted in both the cycling and

noncycling modes. While applying the loc-D to LNETF or

the loc-P to LPF, the normalized weightswn,yi of the nth prior

particle conditioned on observation yi are calculated in the

same way but are homogenized for distant grids in different

manners, using Eq. (7) for loc-D and Eq. (15) for loc-P.
d Experiment 3. To understand the role of the relaxation to

prior particles used in the LPF (i.e., parameter g), the perfor-

mance of LPF_loc-D (g 5 0.5) is compared to that without

using the relaxation (i.e., g 5 1; ‘‘LPF_loc-D_NoRlx’’).

Additionally, experiments that apply the similar relaxation

[Eq. (13)] to the LNETF (‘‘LNETF_loc-D_Rlx’’) are also

performed. The variance of posterior particles after relaxation

is then tuned to the same as that before the relaxation fol-

lowing the LPF [see section 2b(3)].
d Experiment 4. The impact of filter schemes on posterior

moments is investigated by comparing the LPF and LNETF

in noncycling experiments and by using a common localiza-

tion function (i.e., LPF_loc-D and LNETF_loc-D).

d Experiment 5. The inflation of posterior particles is also

applied to LPF_loc-D (denoted by LPF_loc-D_PoInfl) and

LNETF_loc-D (denoted by LNETF_loc-D_PoInfl) to see if

the filter stability and accuracy can be further improved. The

posterior inflation step is the same as Eq. (14) but xfn and xf

are replaced by xan and xa, respectively.
d Experiment 6. A Gaussian filter experiment is performed in

this study as a benchmark tomanifest the benefits of LPF and

LNETF. The ensemble transform Kalman filter (ETKF;

Bishop et al. 2001; Wang and Bishop 2003; Wang et al.

2004) is adopted. The ETKF uses the observation space

localization (R-localization) and posterior inflation strat-

egies to stabilize the filter. The localization and inflation

parameters of the ETKF are tuned for each s and Ne to

optimize the sample mean analysis RMSE for a fair com-

parison to those of other filters. The details of the algorithm

and implementation to Lorenz2005 can be referred toHuang

et al. (2019; i.e., their ‘‘R-D’’ method). Note that ETKF

simply serves as a baseline and its detailed comparison with

LPF and LNETF is beyond the scope of the study.

4. Results
In this section, the performance of the LPF and LNETF in

assimilating both the Gaussian and non-Gaussian observations

are evaluated, compared, and analyzed. The performances

related to the filter stability and accuracy are assessed. A filter

is considered stable if the samplemean root-mean-square error

(RMSE) of analyses within a long experimental period is

smaller than the Std s of observational errors. In addition, the

filter performance is evaluated by the range of parameters that

can lead to a stable filter. A wider range of stable parameters

indicates the filter is less sensitive to the parameter selection.

The filter accuracy evaluates both theRMSE of posteriormean

and higher moments of posterior particles. The results with

Gaussian and non-Gaussian observations offer qualitatively

similar conclusions, indicating the relative performance of LPF

and LNETF could be insensitive to the observation likelihood

functions considered. Therefore, only the results with non-

Gaussian observations were shown throughout this study.

a. Comparing the LPF and LNETF in their original forms
We first compare the performance of the LPF and LNETF in

their generic forms shown in sections 2b and 2c (i.e., LPF_loc-D

versus LNETF_loc-P). Figure 2 shows the sample-mean RMSE

TABLE 2. Descriptions of the algorithms involved in designed experiments.

Name Localization Relaxation to priors Posterior inflation

LPF_loc-D Loc-D Yes, g 5 0.5 No

LPF_loc-P Loc-P Yes, g 5 0.5 No

LNETF_loc-P Loc-P No, g 5 1 No

LNETF_loc-D Loc-D No, g 5 1 No

LPF_loc-D_NoRlx Loc-D No, g 5 1 No

LNETF_loc-D_Rlx Loc-D Yes, g 5 0.5 No

LPF_loc-D_PoInfl Loc-D Yes, g 5 0.5 Yes

LNETF_loc-D_PoInfl Loc-D No Yes

ETKF Observation space localization No Yes
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of analyses in cycling DA experiments for the LPF_loc-D and

LNETF_loc-P as a function of the localization (rd) and infla-

tion (reff) parameters in the Lorenz2005 model. Note that

in RMSE plots like Fig. 2, pink square indicates the filter is

unstable (i.e., violating the stable filter definition in this study).

For both the LPF_loc-D and LNETF_loc-P, the filter overall

exhibits a narrower range of stable parameters when the en-

semble size and/or the observation error is small. The former is

due to the larger sampling errors, and the latter is attributed to

the increased risk of weight collapse with a narrower likelihood

function. Additionally, a smaller ensemble size requires stronger

localization (i.e., a shorter localization range) to maintain a stable

filter, which is consistent with previous studies (Houtekamer and

Mitchell 2001; Lorenc 2003). Noticeably, the LNETF_loc-P

shows a much narrower range of stable parameters than the

LPF_loc-D given the same particle number and observational

FIG. 2. Sample mean RMSE of analyses against the localization (rd) and inflation (reff) parameters for the (a)–(d) LPF_loc-D and

(e)–(h) LNETF_loc-P with s5 1.0 in the cycling assimilation based on the Lorenz2005 model. (i)–(p) As in (a)–(h), but with s5 0.2. The

values in parentheses denote the minimumRMSE. The pink squares indicate the RMSE exceeds the Std of observational errors, which is

considered to be an unstable filter (i.e., violating the stable filter definition in this study).
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error, especially for a small number of particles, such as Ne 5
10 and 20.

The optimal parameters and minimum average RMSE for

the LPF_loc-D and LNETF_loc-P in Fig. 2 are summarized in

Table 3. Generally, the use of more particles requires less re-

strictive localization and less observational error inflation, due

to the more accurate sampling of prior and posterior proba-

bility. Nevertheless, the optimal parameters rd and reff for the

LPF_loc-D are overall wider and smaller than those for the

LNETF_loc-P, respectively, regardless of the observational

accuracy. The former is because the loc-D function imposes

stronger localization effect than the loc-P when particle weights

deviate largely from each other (see discussion in section 4b).

The latter indicates a larger inflation factor is needed for the

LNETF_loc-P, probably due to its overall smaller range of

posterior particles (i.e., the difference between the maximum

and minimum posterior particles) as detailed in section 4d. In

addition to the wider range of stable parameters (Fig. 2), the

minimum average RMSE of the LPF_loc-D is also statistically

significantly (at a 0.05 level) smaller than that of the LNETF_

loc-P for small particle number Ne 5 10 with both s 5 1.0 and

0.2. In contrast, for Ne 5 20, 40, and 80, the minimum RMSEs

are statistically indistinguishable between the twomethods, even

using a much longer period (e.g., 1000 DA cycles, not shown).

The LPF and LNETF are compared with the ETKF. Both

nonlinear filters deliver smaller mean RMSE than the ETKF

with an ensemble size 20 or more, indicating the benefit of

considering the non-Gaussianity of prior particles and obser-

vation errors. However, the LPF and LNETF are inferior to

the ETKF with Ne 5 10, probably because of their insufficient

sampling of posterior probability with a very small number of

particles. The RMSE of ETKF apparently has less dependence

on the ensemble size than that of LPF and LNETF. These

results are consistent with earlier studies comparing linear and

nonlinear ensemble filters (Lei and Bickel 2011; Tödter and

Ahrens 2015; Shen et al. 2017).

b. Difference of the loc-D and loc-P functions
As discussed in sections 2b(2) and 2c(2), the original LPF

and LNETF adopt different functions to realize localization,

whichmay contribute to their performance difference shown in

section 4a. To isolate the impact of localization function, this

section implements the loc-D to LNETF. To better interpret

the property of the two localization functions, we provide a

simplified example with only two particles. Figure 3 shows the

variation of two particle weights as a function of the stan-

dardized distance (i.e., rd 5 1) between the grids and the ob-

servation as shown in Eqs. (7) and (15). The two localization

functions have almost the same variation of particle weights

when the original weights are close (w1 5 0.6 and w2 5 0.4 in

Fig. 3a). In contrast, for two significantly distinct original

weights (w15 0.99 andw25 0.01 in Fig. 3b), their variation shows

more apparent difference. Specifically, the loc-D smooths particle

weights more and imposes stronger localization than the loc-P

with the same distance parameter. This property of the loc-D

function allows larger weight deviations (e.g., caused by a limited

ensemble size) to be more effectively diminished, and thus re-

duces the risk of weight collapse and filter degeneracy. This dif-

ference between the loc-D and loc-P is consistent with the longer

optimal localization parameter rd for the LPF_loc-D (Table 3).

Although the variation of the single-observation weights with

distance could be more harmonized between the loc-D and loc-P

by properly modifying the form of the localization function, a

clear comparison of the two original functions in theory and

practice is a necessary step to provide insight into an effective

construction of localization functions.

TABLE 3. The optimal localization (rd) and inflation (reff) parameters and the corresponding sample-mean RMSE for the LPF_loc-D

and LNETF_loc-P in Fig. 2. The results of the LNETF_loc-D in Fig. 4 and the ETKF are also listed for comparison. The same superscript

number indicates that two RMSE values have statistically significant differences at a 0.05 level.

Ne 5 10 Ne 5 20 Ne 5 40 Ne 5 80

s 5 1.0 rd LPF_loc-D 3.0 5.0 8.0 9.0

LNETF_loc-P 2.0 3.0 6.0 9.0

LNETF_loc-D 1.0 3.0 6.0 8.0

reff LPF_loc-D 0.5 0.5 0.6 0.5

LNETF_loc-P 0.7 0.7 0.7 0.6

LNETF_loc-D 0.6 0.7 0.7 0.6

RMSE LPF_loc-D 0.4311 0.306 0.254 0.234

LNETF_loc-P 0.5241,2 0.313 0.246 0.224

LNETF_loc-D 0.4802 0.311 0.239 0.222

ETKF 0.322 0.315 0.292 0.290

s 5 0.2 rd LPF_loc-D 2.0 4.0 6.0 9.0

LNETF_loc-P 0.5 3.0 4.0 7.0

LNETF_loc-D 2.0 3.0 5.0 8.0

reff LPF_loc-D 0.5 0.4 0.4 0.4

LNETF_loc-P 0.7 0.7 0.5 0.5

LNETF_loc-D 0.5 0.5 0.4 0.4

RMSE LPF_loc-D 0.0903 0.065 0.057 0.051

LNETF_loc-P 0.1253,4 0.073 0.055 0.047

LNETF_loc-D 0.0994 0.069 0.053 0.047

ETKF 0.067 0.071 0.066 0.064
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The analysis in Fig. 3 indicates the potential advantage of the

loc-D in stabilizing filters in cycling data assimilation. To fur-

ther examine the finding, additional cycling experiments are

performed with the LNETF_loc-D approach and compared to

those with the LNETF_loc-P. Figure 4 shows the average

RMSE of the LNETF_loc-D as a function of the localization

and inflation parameters. Replacing the loc-P with the loc-D in

LNETF slightly widens the range of stable parameters as ex-

pected (cf. Figs. 4, 2). Theminimum average RMSE of LNETF

is also improved for particle numbers Ne 5 10, 20, 40, and 80

when the loc-D is used (cf. LNETF_loc-D and LNETF_loc-P

in Table 3). Particularly, the reduced RMSE for Ne 5 10 with

nearly 8% and 20% for s 5 1.0 and 0.2, respectively (see

Table 3), are statistically significant at the 0.05 level. The op-

timal localization and inflation parameters rd and reff of the

LNETF_loc-D also become closer to those of the LPF_loc-D

for s 5 0.2 due to using the same localization function

(Table 3). This finding is, however, not evident for s 5 1.0.

FIG. 3. Evolution of two particle weights as a function of the standardized distance from a given observation for

the loc-D (black) and loc-P (blue) schemes. The weights at the observation position are (a) 0.6 and 0.4, and (b) 0.99

and 0.01, respectively.

FIG. 4. As in Fig. 2, but for the algorithm LNETF_loc-D.

4386 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/11/4377/5008248/m
w

rd190368.pdf by N
O

AA C
entral Library user on 02 N

ovem
ber 2020



Note that in spite of the somewhat wider range of stable

parameters for the LNETF_loc-D by using an alternative

localization function, it still performs much worse than the

LPF_loc-D, which should be attributed to their distinct

update schemes of particles. Section 4e proposes and dem-

onstrates additional means to further improve the LNETF

to reach similar performance as the LPF.

To further diagnose the difference of the analysis accuracy

between the LNETF_loc-D and LNETF_loc-P with optimal

inflation and localization parameters, noncycling experiments

are carried out. The two filters use the same prior particles in

each DA cycle, which are from those of the cycled LPF_loc-D

experiment using the optimal parameters (i.e., Figs. 2a–d,i–l).

This experimental setup can clearly distinguish the impact of

an individual localization function on the posterior mean and

distribution. The results show that the mean analysis RMSE

with Ne 5 10 becomes much closer (0.46 vs 0.45 for s 5 1.0

and 0.09 vs 0.098 for s5 0.2) between the LNETF_loc-D and

LNETF_loc-P in the noncycling experiments given their

respective optimal parameters in the cycling experiments

(see Table 3). In other words, the difference between

LNETF_loc-D and LNETF_loc-P is much reduced going

from a cycling experiment to a noncycling experiment. Given

the posterior difference gets accumulated in a cycling ex-

periment, but not a noncycling experiment, we therefore

deduce that the significantly smaller minimum RMSE of

LNETF_loc-D than LNETF_loc-P with Ne 5 10 in the cy-

cling experiment (Table 3) may be mainly attributed to the

improved sampling of posterior distribution by using the

localization function loc-D.

c. The role of relaxation to priors
One of the major differences of the LPF (Poterjoy et al.

2019) and LNETF (Tödter and Ahrens 2015) lie in the particle

update algorithm. The former uses the relaxation of resampled

posterior particles to the priors with g coefficient [Eq. (13)];

called the g relaxation. The LNETF on the other hand does not

require the relaxation procedure. As discussed earlier, the di-

versity of particles in the classical PF and the LPF would be

constrained by the resampling step, which duplicates particles

with large weights and removes those with negligible weights.

The g relaxation aims to enhance the particle diversity through

mixing posterior and prior particles in the LPF. It was dem-

onstrated in Poterjoy et al. (2019) that the g relaxation is

particularly useful to stabilize the filter with small particle

numbers, but is unnecessary for a sufficient number (i.e., g 5 1

for large particle numbers). In contrast, the LNETF updates

particles with a deterministic filter instead of the resampling

and does not use the relaxation step.

To clarify the impact of the relaxation procedure on filter

performance, two experiments are implemented. One is to

remove the g relaxation from the LPF and compare the

FIG. 5. As in Fig. 2, but for the algorithm LPF_loc-D_NoRlx.
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LPF_loc-D_NoRlx and LPF_loc-D. Figure 5 illustrates the

average RMSE of the LPF_loc-D_NoRlx against varying pa-

rameters in theLorenz2005model. The stable-parameter range of

the LPF is significantly shrunk without using the g relaxation for

all particle numbers and observational accuracies (cf. Figs. 5, 2),

especially for a small observational error (s 5 0.2) and en-

semble size (e.g., Ne 5 10 and 20). Even for a large number

(e.g., Ne 5 80), almost half of the parameters with stable filter

originally in the LPF_loc-D (see Figs. 2d,l) show the filter di-

vergence instead (see pink squares). Likewise, the minimum

average RMSE of the LPF_loc-D_NoRlx for each ensemble

size and observational accuracy is much worse than that of the

LPF_loc-D and the LNETF_loc-D. The above results indicate

that the g relaxation is a critical procedure for the LPF to

stabilize the filter, not only for a small ensemble size but also

for relatively large ones.

The second experiment examines the impact of applying the

particle mixing step to the LNETF by relaxing posterior par-

ticles in LNETF_loc-D to prior ones with g 5 0.5 (i.e.,

LNETF_loc-D_Rlx) and maintain the original posterior mean

and variance similarly as in the LPF_loc-D. It is found that the

g relaxation has only very small impact on the LNETF in terms

of the average RMSE (not shown). The much less reliance of

the LNETF on the relaxation approach is likely because the

LNETF adopts a deterministic update without resampling and

uses the randommatrix in the transformation [see section 2c(3)].

Both to some extent enhance the particle diversity.

d. Difference in the particle update schemes of LPF
and LNETF

The LPF and LNETF have different filter algorithms,

leading to the differences in posterior moments, which can

dramatically impact their filter performance. The LPF relies on

the resampling algorithm during the sequential processing of

observations, while the LNETF applies a deterministic trans-

formation to derive posterior particles based on the simulta-

neous assimilation. To further isolate the impact of filter

schemes, we compare the LPF_loc-D and LNETF_loc-D as-

similation in noncycling experiments with the same prior par-

ticles as in section 4b.

Our results show that the LPF_loc-D and LNETF_loc-D in

noncycling experiments give equal posterior mean and vari-

ance for each variable at each grid point when using the same

localization and b inflation parameters and the same prior

particles in each cycle. This result is consistent with those dis-

cussed in section 2c, indicating that the implementation of the

two nonlinear filters has similar effects on posterior mean and

variance. Specifically, for both LPF and LNETF, the weights

used to obtain posterior mean and variance are calculated from

the original prior members and then modulated by the locali-

zation function to derive the localized weight vectors. This

means that the accumulative localized particle weights given

all observations are identical for the two filters once the same

localization function and prior particles are used. The se-

quential or simultaneous procedure does not affect the calcu-

lation of posterior mean and variance. The different filter

schemes of LPF and LNETF only lead to the difference of

posterior property beyond the mean and variance.

This section compares the probability distribution of pos-

terior particles for the LPF_loc-D and LNETF_loc-D with

their respective optimal parameters in noncycling experiments.

Given the same mean and variance, such a difference comes

from their distinct particle update algorithms in approximating

moments beyond the mean and variance.

Figure 6 illustrates the posterior probability distribution

averaged over all grids and cases for the LPF_loc-D (blue) and

LNETF_loc-D (green) as well as their differences. The pos-

terior particles at each grid in each cycle are normalized before

calculating the PDF. Such calculation provides meaningful

statistics because the effects of different posterior mean and

variance among different grids on PDF are eliminated by the

normalization and grid points of the Lorenz2005model present

statistically identical dynamical properties. It shows that the

LPF_loc-D and LNETF_loc-D have basically the similar

symmetric structure of probability distribution around zero.

However, the differences in the shapes of their posterior

probability distribution can be observed. Such differences are

qualitatively preserved for all particle numbers and observa-

tional errors tested. The LPF_loc-D has about 0.8% lower and

1.2% higher probability near the 1-Std value and the mean

value, respectively. In other words, the LPF_loc-D tends to

have a sharp peak and flat tails around 1 Std from the mean.

Notably, beyond 2 Stds, the LPF_loc-D has slightly (up to

0.3%) higher probability than the LNETF_loc-D. This differ-

ence is seemingly small but may potentially influence the filter

stability and accuracy in the successive DA cycles (see more

discussions on Table 4).

We used three metrics to quantify the differences of poste-

rior probability distribution between the LPF_loc-D and

LNETF_loc-D (see Table 4). One is the percentage of cases

where the range of posterior particles from one filter is larger

than the other (‘‘L_range’’). Note the sum of L_range values

for the LPF_loc-D and LNETF_loc-D should be one. It is

found that the posterior particles of the LPF_loc-D apparently

have a larger percentage (more than double) to span a wider

range than those of the LNETF_loc-D albeit having the same

variance. Further diagnostics suggest that the larger range of

posterior particles by the LPF_loc-D is largely attributed to the

g relaxation. The second metric is relevant to the L_range but

measures the percentage of the true state out of the range of

posterior ensemble (‘‘Tru_out’’) for all cases and grids. It is

found that the true states fall outside of posterior particles

more frequently for the LNETF_loc-D. Although their dif-

ference of Tru_out only ranges from 1.5% to 3%, the higher

frequency of the true state falling outside of the ensemble is

more likely to cause larger sampling error and weight collapse.

The third metric is the continuous ranked probability score

(CRPS) that measures the deviation between the forecasted

and observed probability for ranked ensemble states (e.g.,

Hersbach 2000). A lower CRPS score means a more accurate

probability distribution. The LNETF_ loc-D produces a slightly

better CRPS than the LPF_loc-D for all particle numbers and

observational errors. The worse probability distribution of the

LPF_loc-Dmeasured byCRPS ismost likely due to the relaxation

of prior particles, which loses certain observational information

contained in posterior particles.
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e. Improvement of the LNETF
The diagnostic results in noncycling experiments in section 4d

imply that, despite their same posterior mean and variance, the

LNETF_loc-D overall gives a narrower range of posterior

particles relative to the LPF_loc-D, increasing the possibility of

the true state falling outside of the posterior ensemble. Such a

difference likely explains the performance difference of the

two filters seen in the cycling experiments (see Table 3 and cf.

Figs. 2 and 4). To test this hypothesis, we apply the posterior

inflation (Whitaker and Hamill 2002) to the LNETF_loc-D

(i.e., the LNETF_loc-D_PoInfl) to explore if the filter stability

can be improved.

FIG. 6. Averaged probability distribution of posterior particles over all grids and cases in noncycling experiments for the LPF_loc-D

(blue) and LNETF_loc-D (green) with (a)–(d) s5 1.0 and (e)–(h) s5 0.2 in the Lorenz2005model. The posterior particles at each grid in

each cycle are normalized before calculating the probability distribution. (i)–(p) The probability difference between the LPF_loc-D and

LNETF_loc-D.
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The first step is to determine the optimal inflation factor a of

posterior particles. It is selected by tuning the localization

parameter rd and the posterior inflation factor a for optimal

performance (in terms of RMSE) given reff 5 0.2. a 2 {1.00,

1.01, . . . , 1.15} as in Tödter and Ahrens (2015). We specify

reff 5 0.2, since the LNETF is especially unstable for small

values of reff (see Figs. 2, 4). For a fair comparison, a range

of inflation factor a is tested for the LPF. The optimal a for

the LPF_loc-D_PoInfl and LNETF_loc-D_PoInfl in the

Lorenz2005 model is listed in Table 5. Overall, a tends to be

smaller with more particles and becomes close to zero with

Ne 5 80. The optimal a for the LNETF_loc-D_PoInfl is larger

than that for the LPF_loc-D_PoInfl as expected, especially for

Ne 5 10 and 20.

We specified the optimal posterior inflation factor a for each

ensemble size and observational accuracy. Since the additional

posterior inflation does not reduce the minimum RMSE of

posterior mean of the LPF_loc-D and LNETF_loc-D with

Ne 5 40 and 80, it will only be used in the experiments

with Ne 5 10 and 20. The average RMSE as a function of the

localization and inflation parameters rd and reff in cycling

experiments is shown in Fig. 7. Relative to Fig. 4, the stable-

parameter range of the LNETF_loc-D_PoInfl apparently be-

comes wider for small particle numbers Ne 5 10 and 20,

reaching similar performance as the LPF_loc-D_PoInfl. The

additional inflation of posterior particles also apparently re-

duces the minimum RMSE for the LNETF_loc-D with Ne 5
10. In contrast, the additional posterior inflation has no impact

on the analysis RMSE of the LPF (cf. Figs. 2, 7).

For a more rigorous evaluation, we extended the cycling

DA experiments for the LPF_loc-D_PoInfl and LNETF_

loc-D_PoInfl with their respective optimal parameters to

2500 cycles (i.e., 10 000 model steps). Figure 8 summarizes the

2500-cycle mean analysis RMSE, spread, and CRPS of posterior

particles as a function of particle number in the cycling experi-

ments. The LPF_loc-D_PoInfl and LNETF_loc-D_PoInfl after

optimization using posterior inflation have very similar RMSE,

which are statistically indistinguishable at a 0.05 level for all

particle numbers and observational errors. The ensemble spreads

of the two methods both overestimate the analysis error ampli-

tude. However, the LNETF_loc-D_PoInfl has 10%–40% larger

ensemble spread than the LPF_loc-D_PoInfl forNe 5 10 and 20,

likely due to the larger analysis inflation factor a used in the

former (see Table 5). In terms of the CRPS metric, the

LNETF_loc-D_PoInfl performs better than the LPF_loc-

D_PoInfl. It is similar to those of the noncycling experiments

(see Table 4), except the superiority of LNETF_loc-D_PoInfl

is more significant in the cycling experiments.

In addition to evaluating the accuracy of the posteriors in a

univariate sense using mean RMSE, spread, and CRPS, the

accuracy of the spatial correlation of posterior particles esti-

mated by the LPF and LNETF are compared. We compute the

respective posterior spatial correlation of the two methods

with a large ensemble size Ne 5 400 and use their mean as the

referencing truth. Their respective optimal localization (i.e.,

loc-D) and inflation (i.e., b inflation) parameters are tested and

adopted. It is assumed that Ne 5 400 is sufficient for the LPF_

loc-D and LNETF_loc-D to provide a reliable estimation of

posterior correlation. Figure 9 gives an example of the corre-

lation matrix of posterior particles from grid 1 to 21 for

the LPF_loc-D and LNETF_loc-D with Ne 5 400 in the

Lorenz2005 model. It can be seen that the structure of spatial

correlation for the two methods given the same observation

error is very similar. The average absolute deviations of the

spatial correlation of the LPF_loc-D and LNETF_loc-D from

their mean value range from 0.033 to 0.040 for grid intervals

from 1 to 3. Such average deviation will be used to decide if the

errors of estimated spatial correlation with a much smaller Ne

have statistically significant differences between the two filters.

Figure 10 shows the 2500-sample and 80-grid mean absolute

errors of posterior spatial correlation between gridswith intervals

1, 2, and 3 for the LPF_loc-D_PoInfl and LNETF_loc-D_PoInfl

TABLE 4. Evaluation of posterior probability distribution for the LPF_loc-D and LNETF_loc-D (in parentheses) with s 5 1.0 and 0.2.

L_range is the percentage of a larger range of posterior particles. Tru_out is the percentage of the true state out of the range of posterior

ensemble. CRPS is the continuous ranked probability score. The three metrics are statistics for all grids and cases.

Ne 5 10 Ne 5 20 Ne 5 40 Ne 5 80

s 5 1.0 LPF (LNETF) L_range (%) 66.4 (33.6) 65.9 (34.1) 70.9 (29.1) 75.4 (24.6)

Tru_out (%) 18.8 (21.8) 8.2 (10.0) 3.8 (5.1) 1.2 (2.0)

CRPS 0.192 (0.191) 0.176 (0.172) 0.170 (0.165) 0.164 (0.159)

s 5 0.2 LPF (LNETF) L_range (%) 66.7 (33.3) 64.8 (35.2) 68.0 (32.0) 72.4 (27.6)

Tru_out (%) 14.4 (17.6) 7.4 (9.0) 3.4 (4.5) 1.6 (2.4)

CRPS 0.181 (0.180) 0.173 (0.170) 0.168 (0.164) 0.165 (0.161)

TABLE 5. The optimal posterior inflation factor a for the LPF_loc-D_PoInfl and LNETF_loc-D_PoInfl in the Lorenz2005 model.

Ne 5 10 Ne 5 20 Ne 5 40 Ne 5 80

LNETF_loc-D_PoInfl s 5 1.0 1.13 1.11 1.06 1.01

s 5 0.2 1.10 1.06 1.05 1.01

LPF_loc-D_PoInfl s 5 1.0 1.05 1.03 1.03 1.03

s 5 0.2 1.02 1.04 1.02 1.01
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in the Lorenz2005 model. It is found that the LPF_loc-D_PoInfl

presents more accurate posterior spatial correlation than the

LNETF_loc-D_PoInfl, but only statistically significant (i.e., the

error difference larger than the uncertainty bar) for Ne 5 80. As

discussed in section 2b(3), the LPF relies on the relaxation to

priors to stabilize and improve the filter performance. We hy-

pothesize that blending resampled particles with prior particles

maintains a larger portion of the flow-dependent prior informa-

tion that may be favorable for the spatial correlation estimation.

The LNETF, if solved globally, preserves both the mean and

covariance of the classical PF for all variables at all grid points

[see section 2c(3)]. However, the implementation of the local-

volume filter allows the LNETF to only preserve the posterior

covariance of the PF for variables within the local volume, i.e.,

that at the central grid of each local volume in this study, prob-

ably degrading its performance in posterior spatial correlation

among the grids across local volumes.

5. Conclusions and discussion
The classical PF can theoretically provide more accurate

solutions than the EnKF and EnVar data assimilation strat-

egies when priors and observation likelihoods have non-

Gaussian distributions. Its application to high-dimensional

systems, however, is restricted by the filter degeneracy issue

associated with a requirement that the number of particles

must increase exponentially with the state dimension. Among

the various attempts to apply PFs to high-dimensional sys-

tems with a limited ensemble size, some strategies, e.g., the

localization, are adopted to stabilize the filter. However,

these strategies inevitably increase the filter complexity and

FIG. 7. Sample mean RMSE of analyses against the localization (rd) and inflation (reff) parameters for the (a),(b) LPF_loc-D_PoInfl and

(c),(d) LNETF_loc-D_PoInfl with s 5 1.0 in the Lorenz2005 model. (e)–(h) As in (a)–(d), but for s 5 0.2.

FIG. 8. Sample mean (a),(b) analysis RMSE (solid lines) and

spread (dashed lines) and (c),(d) CRPS of posterior particles as a

function of particle number for the LPF_loc-D_PoInfl (blue) and

LNETF_loc-D_PoInfl (green) in the Lorenz2005 model.
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some ‘‘cure’’ may deviate from the original motivation of the

Monte Carlo method. The two nonlinear filters, LPF and

LNETF, compared in this study belong to this category.

The LPF and LNETF adopt the partially sequential and the

simultaneous assimilation, respectively. Both filters localize

observational impacts to alleviate filter degeneracy but using

different localization functions. In addition, they adopt dis-

tinct schemes to update posterior particles. The final result of

all these ‘‘cures’’ is that both methods can preserve the pos-

terior mean and variance of the PF. The LNETF additionally

preserves the posterior correlation of variables within each

local volume. The current study systematically compares the

two methods in the widely used Lorenz (2005) model to re-

veal the impacts coming from their differences. Methods to

improve the LNETF to reach indistinguishable performance

relative to the LPF are proposed and tested.

The results showed that the original LPF displays a much

larger stable parameter range than the original LNETF with

varying localization and inflation parameters for all particle

numbers when the same adaptive observational error inflation

scheme (i.e., b inflation) is used. The minimum average RMSE

of the original LPF is significantly (at the 0.05 level) smaller

than that of the original LNETF with very small ensemble size

like Ne 5 10. Their RMSE scores become similar with larger

particle numbers. Such performance is found to be closely re-

lated to their distinct original localization functions (loc-D

versus Loc-P) and particle update algorithms. The localization

function used in the LPF (i.e., loc-D), when the weights as-

signed on the particles are largely different, imposes stronger

localization effects than the localization function used in the

LNETF (loc-P). Such property of the loc-D potentially reduces

the risk of weight collapse and improves the filter stability. Our

experiments have shown that the performance of the LNETF is

improved when it uses the same localization function (i.e.,

loc-D) as the LPF.

In addition to the localization function, the filter perfor-

mance difference among the original LPF and LNETF is also

attributed to their distinct filter algorithms. Our experiments

suggest that the relaxation of posterior particles to priors

(g relaxation) is critical for the resampling step of the LPF to

enhance the particle diversity and maintain the filter stability.

In contrast, the LNETF does not require the g relaxation since

it incorporates a random rotation of perturbations to the de-

terministic square root transformation of priors to stabilize

the filter.

Our experiment results also demonstrate that the posterior

mean and variance of the LPF and LNETF are identical given

the same priors and localization function. It is because both

filters use the localized particle weights on original prior par-

ticles to estimate posterior mean and variance regardless of the

serial or simultaneous processing of observations. For the LPF,

its posteriors from a given observation are used as the priors for

deriving the posterior particles given the next observation

before the latter are adjusted to match the posterior mean and

variance (i.e., the defined partially sequential assimilation).

With regard to the posterior distribution, the posterior parti-

cles of the LNETF exhibit an overall narrower range when

using the same prior particles, observations, and localization

function (i.e., loc-D) as the LPF, resulting in a higher per-

centage of true state out of posterior ensemble. Therefore,

additional inflation of posterior particles was applied to the

LNETF. As expected, it significantly improves the filter sta-

bility and analysis accuracy of the LNETF, especially with

fewer particles, reaching similar performance as the LPF.

Several other aspects of the posterior particles are evaluated

and compared. The LNETF has 10%–40% larger posterior

ensemble spread than the LPF due to using a larger posterior

inflation factor, but both algorithms overestimate the poste-

rior spread on average. The LNETF exhibits a more accurate

probability distribution of posterior particles than the LPF in

terms of the CRPS. The inferior CRPS by the LPF is likely

attributed to the relaxation of the LPF to the prior particles.

This relaxation process may cause the loss of certain observa-

tional information in posterior particles. On the other hand,

the LPF exhibits a slightly improved estimation of the spatial

correlation of posterior particles relative to the LNETF when

the ensemble size is relatively large.

It is worthwhile to note that while this study addresses the

differences between the LPF and LNETF, methods that fur-

ther improve the LNETF are proposed. Tödter and Ahrens

(2015) demonstrated that the LNETF does not work with very

small ensemble sizes such as 10. Our study has shown that the

filter stability of LNETF with such a small particle number in

the samemodel can be improved by using the b inflation, loc-D

localization function, and posterior inflation. After optimiza-

tion, the two nonlinear filters ultimately reach very similar

levels of analysis accuracy. These initial experiments, despite

conducted in a simple model, can provide implications for the

FIG. 9. Spatial correlation of posterior particles from grid 1 to 21

for the (a),(b) LPF_loc-D and (c),(d) LNETF_loc-Dwith s5 (left)

1.0 and (right) 0.2 in the Lorenz2005 model.
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development of the classical PF and nonlinear DA in high-

dimensional systems. It is noted that the LPF translates into the

classical PF as the particle number gets larger and its various

parameters are relaxed. From our findings, we also emphasize

that caution must be taken when comparing DA algorithms,

since generic strategies for maintaining filter stability (such as

choices of localization function and inflation) can have a major

impact on conclusions. Comparing the two nonlinear filters in a

more realistic high-dimensional model and/or considering

model deficiencies is left for future study. The physical balance

in analysis fields also deserves to be carefully investigated for

the two localized particle filters. For future experiments and

for a fair comparison with the LNETF adopting a subdomain,

the LPF should be designed to use the Gaspari–Cohn like

function (Gaspari and Cohn 1999).
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